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Abstract 

Normalization factors Nt,, for spherical harmonic 
density functions Ct~p defined by ~ Ntm ct,,,p[d'r= 
2 -  St0 have been derived for l-< 7, from both analyti- 
cal and numerical integration methods. 

Method of calculation 

From (1) and (2) Nt,~ is given by 

Ntm = 1/ It,,,J,,, or Nt,. = 2/ Iz,.Jm 

with 

(3) 

Introduction 

The increasing accuracy of X-ray diffraction data has and 
led to more widespread use of spherical atom scatter- 
ing formalisms. In the multipole formalism the atomic 
density is described by a series of real spherical har- 
monic functions ytmp with p - - +  or - ,  multiplied by 
a normalized radial function R(r) (Dawson, 1967; or 
Stewart, 1976; Hansen & Coppens, 1978; Kurki- 
Suonio, 1968; Price & Maslen, 1978). The functions 
Ylmp are defined as 

Yt,,w = NtmpP?(cos O) cos m~p for p = + (1) 
sinm~p f o r p = -  

where P?(cos 0) are the associated Legendre poly- 
nomials (Arfken, 1970). A number of authors (Price 
& Maslen, 1978; Hansen & Coppens, 1978) have 
normalized the angular functions Ytmp such that 

~]Ytmp(O,~p)[d~-=l if 1=0 
=2 i l l > 0 .  (2) 

We shall adopt the convention that density func- 
tions normalized according to (2) are labelled dt,,p 
(Coppens, 1988). 

For a monopole function (1 = 0) the normalization 
implies that a population parameter Poo--1 corre- with 
sponds to a population of one electron, while for the 
higher-order poles P~m = 1 implies that one electron 
has been shifted from the negative to the positive 
lobes of the function. Normalization factors Ntm for 
I-< 4 have been published (Hansen & Coppens, 1978). 
Though truncation of the expansion at 1 = 4 is often 
warranted, this is not always the case. In particular, 
in highly symmetric environments the lowest sym- 
metry-allowed multipole with m # 0 may be of higher 
order than four in I. An example is an atom at a site 
with sixfold symmetry, for which the first allowed 
multipole with non-zero m is Y66+. We report here on 
the values of Ntm as defined by (1) and (2) for 1-<7. 
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which gives 

+1 

It,,, = j" IP["(z) dz 
-1  

2rr 

Jm = .~ Icos m~[ d~ 
0 

2~ 

Jm - $ [sin m~o] d~, 
0 

J,. = 4  for m > 0; J,, =2zr for m = 0. 

Evaluation of It,. requires calculation of the roots 
of the equation P f ' ( z ) = 0  and integration between 
boundaries equal to the root values. This is most 
easily done when the associated Legendre functions 
are expressed as a series in powers of z: 

where 

P["(z )=(1/ l !2 ' ) (1-z2)" /2p , . , ( z ) .  (4) 

I 
ptm(z)= Z Ak Z2k-t-m 

k= k i 

(--1)k-'l! (2k)! 

Ak - -kT.() Z-ff)i ( 2 k _  l _  m) ! 

( l + m ) / 2  if l + m  odd 
ki = 

(1+ m + 1)/2 if 1+ m even. 

Thus pt,.(z) is a polynomial of degree 1 -m.  Since 
the exponent increases by two between successive 
terms either even or odd powers occur. 

The integration (2) requires evaluation of the roots 
of Pt,,. As it is not possible to find analytically the 
roots of a polynomial of degree larger than 4, the 
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Table 1. Normalization factors of  spherical harmonic 
density functions 

Ntm Ntm 
1 m p Ctmp(X,y, z )*  C t  numerical  analytical  

0 0 1 ( 1 ) 0-0795776 0.0795774 

1 0 z (1) 0.3183106 0.3183099 
1 + x (I) 0.3183103 0.3183099 

- y 

2 0 3 z 2 - 1  (1/2) 0.2067485 0.2067483 
! + xz (3) 0.7500008 0.7500000 

- yz 
2 + x 2 _y2  (3) 0.3750000 0.3750000 

- 2xy 

3 0 5 z 3 - 3 z  (1/2) 0.2448539 0.2448538 
1 + (5z 2 - l )x  (3/2) 0.3203333 0.3203331 

- ( 5 z 2 -  l )y  
2 + z ( x 2 -  y 2 ) (15) 1.0000000 1.0000000 

- 2xyz 
3 + x 3 - 3 x y  2 (15) 0"4244131 0.4244132 

_ 3x2y _ y3 

4 0 3 5 z 4 - 3 0 z 2 + 3  (1/8) 0"0694175 0"0694175 
1 + (7z 3 - 3 z ) x  (5/2) 0.4740028 0.4740025 

- (7z 3 - 3 z ) y  
2 + (7z2_ 1)(x 2_y2)  (15/2) 0"3305913 0.3305913 

- 2xy (7z2-1)  
3 + z(x  3 - 3 x y  2) (105) 1"2499999 1"2500000 

- z ( 3 x 2 y - y  3) 
4 + x 4 - 6 x 2 y 2 + y  4 (105) 0.4687500 0.4687500 

- 4x3y - 4 x y  3 

5 0 6 3 z S - 7 0 z 3 +  15z (1/8) 0.0767395 0'0767395 
I + (21z 4 -14z2+  l )x  (15/8) 0"3229812 

- ( 2 1 z 4 - 1 4 z 2 +  l)y 
2 + ( 3 z 3 - z ) ( x 2 - y  2) (105/2) 1-6875000 

- 2xy(3z 3 - z) 
3 + (9z 2 -  l ) (x  3 - 3 x y  2) (105/2) 0.3451455 

- (9z 2 - 1) (3x2y -y  3) 
4 + z ( x 4 - 6 x 2 y 2 + y  4) (945) 1"5000000 1"5000000 

- z(4xay - 4 x y  3) 
5 + x 5 -  lOx3y2+5xya (945) 0"5092958 0"5092958 

- 5xny - lOx2y3+y 5 

6 0 231z6-315z4+lO5z2-5  ( i /16)  0'0417084 
1 + (33zS-30z3+5z)x  (21/8) 0"4172129 0"4172128 

- (33zS-30z3+5z)y  
2 + ( 3 3 z 4 - 1 8 z 2 + l ) ( x 2 - y  2) (105/8) 0"3261107 0"3261107 

- 2xy(33z 4 -18z2+  1) 
3 + ( l l z 3 - 3 z ) ( x 3 - 3 x y 2 )  (315/2) 0"6513219 

- ( l l z 3 - 3 z ) ( 3 x 2 y - y  3) 
4 + ( l l z 2 - 1 ) ( X 4 - 6 x Z y 2 + y  4) (945/2) 0"3610405 

- ( l l z 2 - 1 ) ( 4 x 3 y - 4 x y  3) 
5 + z (x  5 -  lOx3y2+5xy4) (10395) 1"7500002 1'7500000 

- z(Sx4y - IOx2y3+y 5) 
6 + X 6 -- 15x4y2.+ 15x2y4 _y6  (10395) 0"5468750 

- 6xSy -- 20X3y 3 + 6xy 5 

7 0 429z7-693zS+315z3-35z  (1/16) 0.0447979 
1 + (429z 6 - 495z4 + 135z 2 - 5)x (7/16) 0.0648780 

- (429z6-495z4+135z2-5)  z 
2 + (143z5 -110z3+15z ) ( x2 -y  2) (63/8) 0"1573192 

- 2xy(143zS- l lOz3+15z)  
3 + (143za-66z2+3)(x3-3xy2)  (315/8) 0"1109240 

- ( 1 4 3 z 4 - 6 6 z 2 + 3 ) ( 3 x 2 y - y  3) 
4 + (1 . - z3 -3 z ) ( x4 -6x2y2+y  4) (3465/2) 0'7404370 

- (13z 3 - 3 z ) ( 4 x 3 y - 4 x y  3) 
5 + ( 1 3 z 2 - l ) ( x S - l O x 3 y 2 + 5 x y  4) (10395/2) 0"3772319 

- ( 13z2 -1 ) (5x4y - lOx2y3+y  5) 
6 + z (x6 -15x4y2+15x2y4-y6 )  (135135) 2.0000000 

- z(6xSy -- 20x3y 3 + 6xy 5) 
7 + X7--21xSy2+35x3y4--7Xy6 (135135) 0"5820523 

- 7x6y--35x4y3+21x2yS--y 7 

* x = sin 0 cos ¢, y = sin 0 sin ¢, z = cos 0. 
t Common factor such that C c l m  p = dt,,p , where dt,,p is defined by equations (1) and (2). 

analytical integration is limited to values of l-< 9 (for 
l = 8 the expansion contains four even terms; for l = 9, 
z can be factored out, which leads to a four-term 
expansion). In addition, the analytical procedure is 
extremely cumbersome. An alternative procedure is 
a numerical evaluation of both the roots and the 
integrals. Using the commercially available sub- 
routines Z R O O T S  (Laguerre method) and Q R O M B  
(Romberg integration) (Press, Flannery, Teukolsky 
& Vetterling, 1986) we have evaluated the integrals 
Itm. Results of the numerical integration, as well as 
analytical values for a number of cases are given in 
Table 1. In the calculation of these values, common 
integers in the functions dtm have been eliminated 
(Hansen & Coppens, 1978; Coppens, 1988). The 
definition of  the resulting functions ctm and the com- 
mon integers are given in the fourth and fifth columns 
of Table 1. 

The comparison with the analytical results is a 
measure for the numerical accuracy obtained. Since 
standard deviations in experimental population par- 
ameters are considerable [ t r ( P ) / P  is typically larger 
than 5%], the accuracy achieved is more than 
adequate. 

Support of  this work by the National Science 
Foundation (CHE8403428) is gratefully acknowl- 
edged. Computing was done on a VAX785 made 
available through the National Science Foundation 
(CHE8406077).  
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Abstract 

The influence of the bending of a crystal on the 
formation of diffracted images in Bragg section topo- 
graphs as well as in Laue section and traverse topo- 
graphs is studied. In the case of Bragg section 
topography the interferometric fringes due to the 
interference of waves once and twice internally reflec- 
ted inside a bent crystal are described. It is established 
that the maximum positions of diffracted intensity 
satisfy the law x, = [167r(2n - 1)/5B2] 1/3, where x, is 
the distance from the incidence slit of the X-rays, B 
is the uniform strain gradient and n is the fringe 
number. This dependence is found to be in good 
agreement with experimental data. The Laue section 
topograph of a bent crystal with a screw dislocation 
parallel to the diffraction vector is considered. The 
effects of asymmetry in the Pendell6sung fringe pat- 
tern and of 'splitting' of the direct image with respect 
to the dislocation line in both the experimental and 
simulated topographs are accounted for. The vari- 
ation of the contrast of dislocations with depth inside 
a bent crystal in Laue traverse topographs is studied 
by computer simulations using the reciprocity 
theorem. 

I. Introduction 

The dynamical scattering of X-rays (DSXR) in distor- 
ted crystals with a uniform strain gradient (USG) has 
been investigated in a number of studies (Kato, 1964; 
Bonse, 1964; Penning, 1966; Hart, 1966; Blech & 
Meieran, 1967; Malgrange, 1969; Ando & Kato, 1970; 
Petrashen', 1973; Chukhovskii, 1974; Petrashen' & 
Chukhovskii, 1975; Chukhovskii & Petrashen', 1977; 
Chukhovskii, Gabrielyan & Petrashen', 1978; 
Kushnir, Suvorov & Mukhin, 1980; Khrupa, 
Kislovskii & Datzenko, 1980; Petrashen' & 
Yaroslavskaya, 1981; Balibar, Chukhovskii & 
Malgrange, 1983; Shulpina, Petrashen', Chukhovskii 
& Gabrielyan, 1984) and is a starting point for the 
quantitative theory of X-ray topographic images and 
the theory of DSXR in distorted crystals in general. 
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In practice a situation can exist where the USG 
macroscopic elastic field is superposed on those 
caused by single defects in a crystal. Their cooperative 
action was experimentally observed: in X-ray traverse 
topographs of bent crystals the dislocation contrast 
is found to be reversed (Blech & Meieran, 1967); in 
Laue section topographs of a twisted silicon crystal 
the Pendell6sung fringe patterns become asym- 
metrical with respect to a dislocation line (Kushnir, 
Suvorov & Mukhin, 1980); owing to dislocation loops 
randomly distributed within a crystal the dependence 
of the reflecting power on the radius of curvature of 
the sample is changed (Khrupa, Kislovskii & 
Datenzko, 1980); and in Bragg diffraction a new kind 
of USG fringe, curved near local inhomogeneities, 
has been observed recently (Shulpina, Petrashen', 
Chukhovskii & Gabrielyan, 1984). 

The study of these phenomena is of interest in itself 
since it permits one to understand better the general 
features of the formation of X-ray topographic images 
and it can also demonstrate how to use crystal bending 
as a new tool for DSXR investigations of crystal- 
lattice defects. 

In the present paper we shall discuss the physical 
foundations of the formation of X-ray topographic 
images for bent crystals; these are important from the 
point of view of applications and further development 
of DSXR methods. We confine our consideration to 
the case of the USG I BI ~ 1 [the dimensionless USG 

l O2(hu)/OSoOSh; hereafter the notation is that of B = Z  
Petrashen' & Chukhovskii (1975)], when two wave 
fields relating to the two branches of the dispersion 
surface are essential and contribute simultaneously 
to the formation of images. In § 2 the Green function 
of the diffracted radiation and its asymptotic 
expression (the eikonal approximation) are used for 
the explanation of the Pendell6sung fringes in Laue 
section topographs. The eikonal approximation is 
used to treat the USG fringe formation in Bragg 
section topographs in § 3. 

In the final section some pecularities of the disloca- 
tion images in both Laue section and traverse topo- 
graphs are discussed. The treatment is based on 
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